Greedy optimization classifiers ensemble based on diversity

نویسندگان

  • Shasha Mao
  • Licheng Jiao
  • Lin Xiong
  • Shuiping Gou
چکیده

Decreasing the individual error and increasing the diversity among classifiers are two crucial factors for improving ensemble performances. Nevertheless, the ‘‘kappa-error’’ diagram shows that enhancing the diversity is at the expense of reducing individual accuracy. Hence, a newmethod namedMatching Pursuit Optimization Ensemble Classifiers (MPOEC) is proposed in this paper in order to balance the diversity and the individual accuracy.MPOECmethod adopts a greedy iterative algorithmofmatching pursuit to search for an optimal combination of entire classifiers, and eliminates some similar or poor classifiers by giving zero coefficients. In MPOEC approach, the coefficient of every classifier is gained by minimizing the residual between the target function and the linear combination of the basis functions, especially, when the basis functions are similar, their coefficients will be close to zeros in one iteration of the optimization process, which indicates that obtained coefficients of classifiers are based on the diversity among ensemble individuals. Because some classifiers are given zero coefficients, MPOEC approach may be also considered as a selective classifiers ensemble method. Experimental results show that MPOEC improves the performance comparedwith othermethods. Furthermore, the kappa-error diagrams indicate that the diversity is increased by the proposed method compared with standard ensemble strategies and evolutionary ensemble. & 2010 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classifier Ensemble Framework: a Diversity Based Approach

Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...

متن کامل

Fault Detection of Bearings Using a Rule-based Classifier Ensemble and Genetic Algorithm

This paper proposes a reduct construction method based on discernibility matrix simplification. The method works with genetic algorithm. To identify potential problems and prevent complete failure of bearings, a new method based on rule-based classifier ensemble is presented. Genetic algorithm is used for feature reduction. The generated rules of the reducts are used to build the candidate base...

متن کامل

Evolutionary Multiobjective Optimization for Generating an Ensemble of Fuzzy Rule-Based Classifiers

One advantage of evolutionary multiobjective optimization (EMO) algorithms over classical approaches is that many non-dominated solutions can be simultaneously obtained by their single run. In this paper, we propose an idea of using EMO algorithms for constructing an ensemble of fuzzy rule-based classifiers with high diversity. The classification of new patterns is performed based on the vote o...

متن کامل

Learning to Diversify via Weighted Kernels for Classifier Ensemble

Classifier ensemble generally should combine diverse component classifiers. However, it is difficult to give a definitive connection between diversity measure and ensemble accuracy. Given a list of available component classifiers, how to adaptively and diversely ensemble classifiers becomes a big challenge in the literature. In this paper, we argue that diversity, not direct diversity on sample...

متن کامل

The ensemble clustering with maximize diversity using evolutionary optimization algorithms

Data clustering is one of the main steps in data mining, which is responsible for exploring hidden patterns in non-tagged data. Due to the complexity of the problem and the weakness of the basic clustering methods, most studies today are guided by clustering ensemble methods. Diversity in primary results is one of the most important factors that can affect the quality of the final results. Also...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2011